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Example: Single-Server Task Scheduling
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limited time budget

Random, type-dependent completion time

One task at a time

Random reward at the end
Heavy-tailed & positively correlated (Harchol-Balter, ‘99)

Objective: Learn to maximize the expected total reward in [0, B]

Tasks



Budget-Constrained Bandit Problem

Bandit problem with random Xn,k. Examples incl. dynamic pricing, adaptive routing.
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Stochastic setting: (Badanadiyuru et al., ‘13; Agrawal & Devanur, ‘14; Xia et al., ‘15)

Adversarial setting: (Immorlica et al., ‘19)

Contextual bandits: (Gyorgy et al. ’07; Agrawal & Devanur, ‘16)

*

*

Regret lower bound

Unbounded and potentially heavy-tailed cost and reward

• Positive correlation between cost and reward

Our contributions:

• Variability of cost and reward

* Algorithms that achieve tight (almost-matching) regret bounds

* Empirical variance estimates for improved performance without prior knowledge



General Budget-Constrained Learning Problems

Number of pulls:  

Total reward:

Arm k: (Xn,k, Rn,k) iid from an unknown distribution

Objective:

Statistics: • Cost Xn,k and reward Rn,k can be positively correlated.

• Xn,k and Rn,k have unbounded support, potentially heavy-tailed
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Positive drift: (Not necessarily Xn,k > 0 a.s.)
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If                         and                         for all arms for p > 2, then we have:

Approximation of the Oracle

Unbounded knapsack problem → PSPACE-hard (Papadimitriou, ‘96)1

2 Static approximation: Persistently pull arm k

Renewal theory:                                                                                                    (Gut, ‘09) 

Optimal static policy:                                     for all n

Theorem 1. (Optimality Gap)

Bounded optimality gap and asymptotic optimality for πst even for unbounded Xk as B→∞

Depends on

reward rate (per unit cost)

Can be used as a benchmark algorithm for online learning purposes

Independent of B



UCB-B1 Algorithm: Jointly Gaussian Case

“Optimism in the face of uncertainty” principle1

Simple case: Jointly Gaussian + known 2nd-order moments2

Uncertainty       Confidence radius 

Empirical estimation
by Hoeffding inequality

where

Concentration inequality for reward rate

increasing in x and y

w.h.p.



UCB-B1 Algorithm: Jointly Gaussian Case

Joint estimation problem: Estimate separately1
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UCB-B1 Algorithm: Jointly Gaussian Case

Joint estimation problem: Extract correlation between cost and reward1
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Use an estimator for de-correlation



UCB-B1 Algorithm: Jointly Gaussian Case

Joint estimation problem: Extract correlation between cost and reward1
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UCB-B1 Algorithm: Jointly Gaussian Case

How to extract the correlation?Q

Linear MMSE Estimator:A

Idea: Minimize the variance of the residual term

Smaller confidence radius         Lower regret 

Result: Mean estimation with smaller variance



UCB-B1 Algorithm: Jointly Gaussian Case

UCB-B1:

Exploiting the correlation:                                                      gain.            How tight?

Classical stochastic MAB regret bounds for Var(X1,k) = 0. 

?

Theorem 2. (Regret Upper Bound for UCB-B1)
Let and ∆k=r*-rk. Then, we have:

for



Regret Lower Bounds: Jointly Gaussian Case

(Regret Lower Bound for Gaussian Case)
Let                                   with known Σk. Then,

Recall:

Optimal regret up to a universal constant C1 for UCB-B1.

Reflects the impact of variability and correlation on the regret.



Regret Lower Bounds: General Case

Let                          for 
Information geometry: For any r > 0,

Theorem 3. (Regret Lower Bound)
Let                        . Then, for any uniformly good policy π:

(M-projection)



UCB-B1 Algorithm: Bounded Cost and Reward

Known 2nd-order moments,

MX and MR dependence is inevitable

Bernstein inequality (tighter than Hoeffding)

Higher regret as min(MX,MR) increases

Defect of the empirical estimator (Bubeck, 2012)



Xs,k, Rs,kXv,k, Rv,kX2,k, R2,kX1,k, R1,k

UCB-M1 for Heavy-Tailed Cost and Reward

Empirical estimation fails for HT: polynomial not exponential convergence rate

Median-based robust rate estimation (Nemirovski & Yudin, ‘83; Bubeck et al., ‘13)

… …

…

Idea: Divide the data into chunks and take the median – exploit the correlation inside the chunks 

exponentially fast if 

UCB-M1: If                          and                         for all arms for p > 2,

CM1 > C1: Price of generality



UCB-B2: Using Empirical Estimates

What if you do not know the second-order moments??

Using empirical estimates in UCB-B1 → UCB-B2

Non-asymptotic analysis of using these empirical estimates: kurtosis

Small ∆k → UCB-B1



Conclusions

Achievability: O(log B) regret if p-moments exist for p > 24

1 Regret lower bound: Problem-dependent fundamental performance limit

2 Algorithms with tight problem-dependent regret bounds

3 Optimality: Optimal regret up to a constant factor in the Gaussian case
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