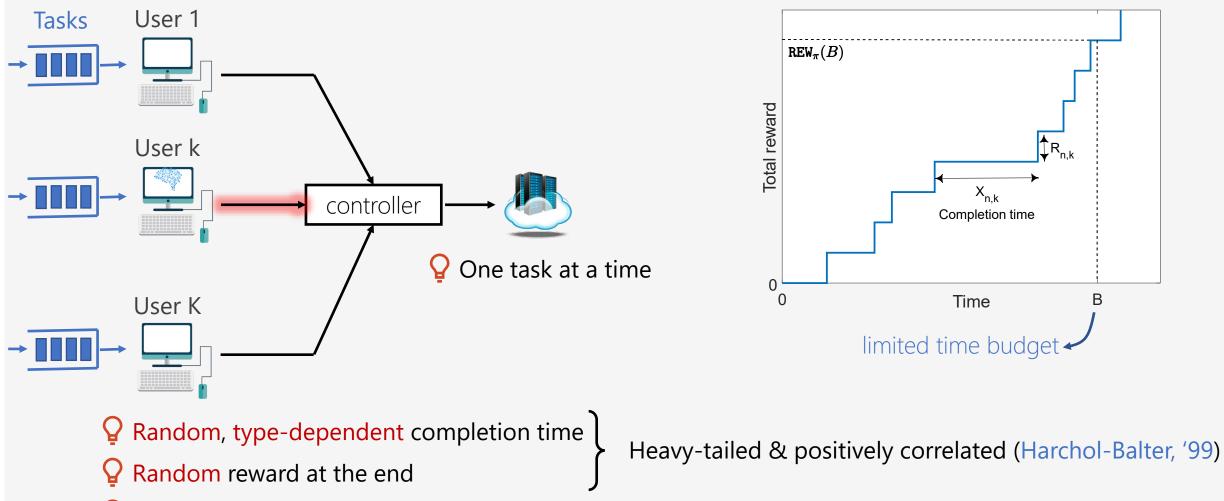
Budget-Constrained Bandits over General Cost and Reward Distributions

Semih Cayci¹, Atilla Eryilmaz¹, R. Srikant²

¹The Ohio State University, ECE

² University of Illinois at Urbana-Champaign, CSL and ECE

Example: Single-Server Task Scheduling



 \mathbf{Q} Objective: Learn to maximize the expected total reward in [0, B]

Budget-Constrained Bandit Problem

Bandit problem with random X_{n,k}. Examples incl. dynamic pricing, adaptive routing.

Stochastic setting: (Badanadiyuru et al., '13; Agrawal & Devanur, '14; Xia et al., '15)

Adversarial setting: (Immorlica et al., '19)

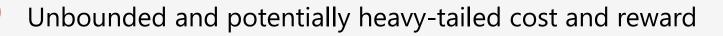
Our contributions:

Regret lower bound

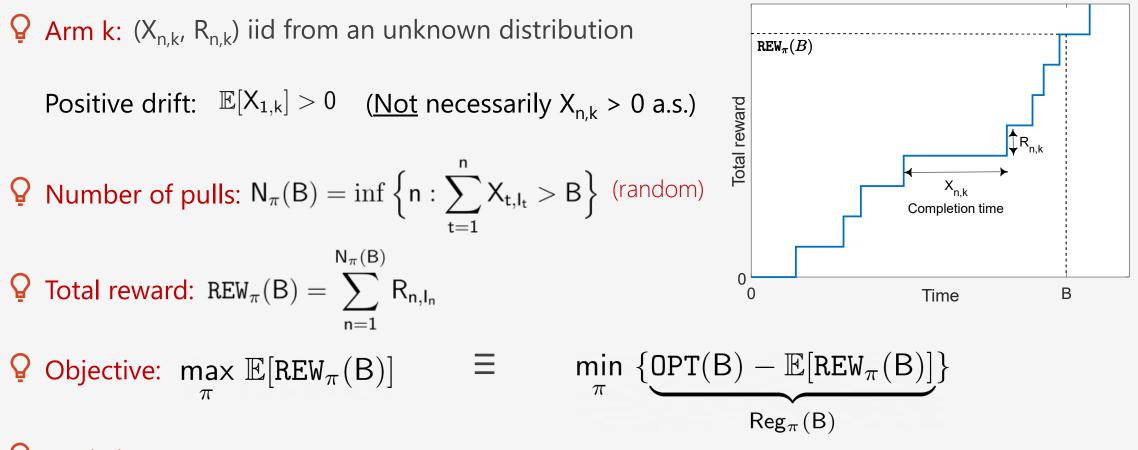
Algorithms that achieve tight (almost-matching) regret bounds

- Positive correlation between cost and reward
- Variability of cost and reward

Empirical variance estimates for improved performance without prior knowledge



General Budget-Constrained Learning Problems



Statistics: • Cost $X_{n,k}$ and reward $R_{n,k}$ can be positively correlated.

• $X_{n,k}$ and $R_{n,k}$ have unbounded support, potentially heavy-tailed

Approximation of the Oracle

max E[REW_π(B)] Unbounded knapsack problem → PSPACE-hard (Papadimitriou, '96)
 Static approximation: Persistently pull arm k

Renewal theory:
$$\mathbb{E}[\operatorname{REW}_{\pi}(B)] = \frac{\mathbb{E}[R_{1,k}]}{\mathbb{E}[X_{1,k}]} \cdot B + o(B) = r_k \cdot B + o(B)$$
 (Gut, '09)
reward rate (per unit cost)

Optimal static policy: $\pi_n^{st} = \underset{k}{\operatorname{argmax}} r_k$ for all n

Theorem 1. (Optimality Gap)

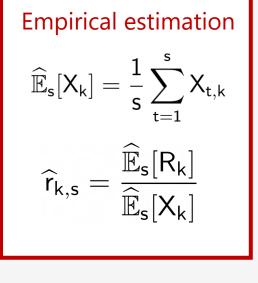
If $\mathbb{E}[|\mathsf{R}_{k,1}|^p] < \infty$ and $\mathbb{E}[|\mathsf{X}_{k,1}|^p] < \infty$ for all arms for p > 2, then we have:

$$OPT(B) - \mathbb{E}[REW_{\pi^{st}}(B)] = O(1)$$
 Depends on $\mathbb{E}[X_{k,1}]$

Independent of **B**

Bounded optimality gap and asymptotic optimality for π^{st} even for unbounded X_k as $B \rightarrow \infty$ Can be used as a benchmark algorithm for online learning purposes

$$rad_{s}(X, \delta) = \sqrt{\frac{2Var(X)\log(\delta^{-1})}{s}}$$
 by Hoeffding inequality



 \mathbf{Q} Concentration inequality for reward rate

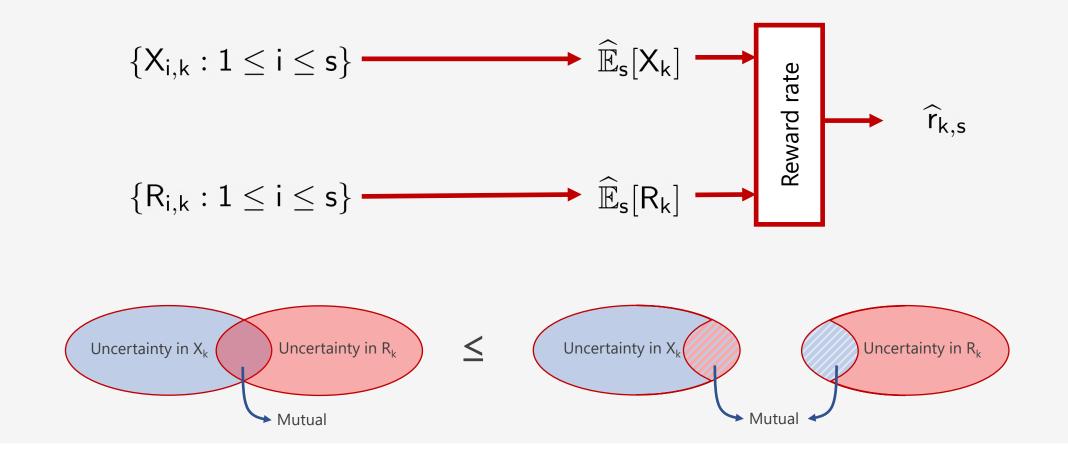
$$\left|\widehat{r}_{k,s} - r_{k}\right| \leq \Psi_{k,s} \left(\texttt{rad}_{s}(X_{k}, \delta), \texttt{rad}_{s}(\mathsf{R}_{k}, \delta)\right) \text{ w.h.p}$$

where
$$\Psi_{k,s}(x,y) = \frac{y + r_{k,s} \cdot x}{\left(\widehat{\mathbb{E}}_{s}[X_{k}] - x\right)_{+}}$$

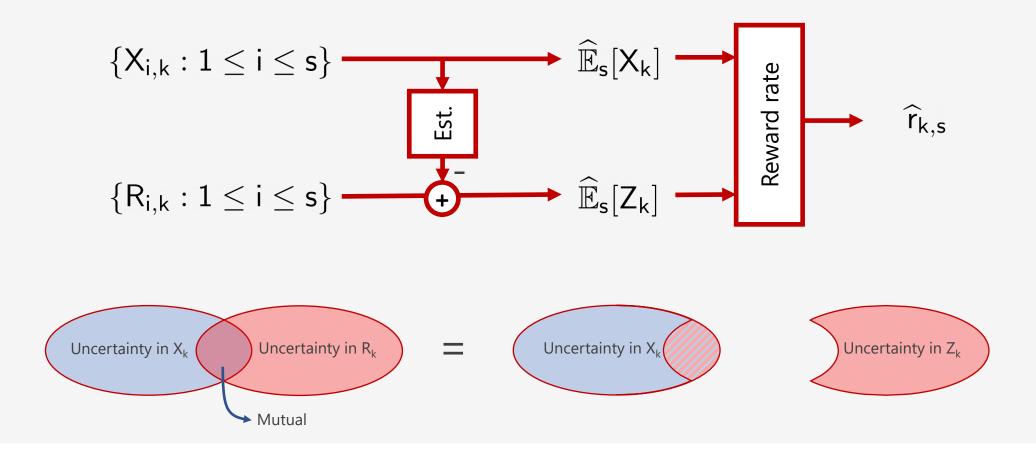
 \bigcirc Uncertainty \propto Confidence radius

 \rightarrow increasing in x and y

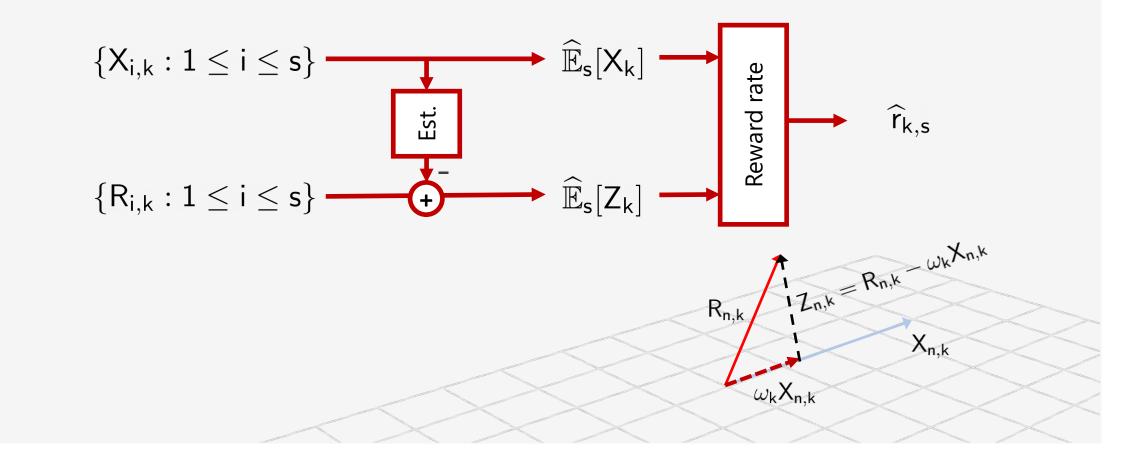
1 Joint estimation problem: Estimate separately (ignore correlation)



Joint estimation problem: Extract correlation between cost and reward Use an estimator for de-correlation



Joint estimation problem: Extract correlation between cost and reward
Use an estimator for de-correlation



How to extract the correlation?

Linear MMSE Estimator:
$$\omega_{k} = \arg \min_{\omega \in \mathbb{R}} \operatorname{Var}(\mathsf{R}_{k,1} - \omega \mathsf{X}_{k,1}) = \frac{\operatorname{Cov}(\mathsf{X}_{k,1}, \mathsf{R}_{k,1})}{\operatorname{Var}(\mathsf{X}_{k,1})}$$

Idea: Minimize the variance of the residual term $Z_{k,n} = R_{k,n} - \omega_k X_{k,n}$

Result: Mean estimation with smaller variance $rad_s(Z_k, \delta) \leq rad_s(R_k, \delta)$

$$\begin{split} \widehat{r}_{k,s} - r_k \Big| &\leq \Psi_{k,s} \Big(\texttt{rad}_s(X_k, \delta), \texttt{rad}_s(Z_k, \delta) \\ &\leq \Psi_{k,s} \Big(\texttt{rad}_s(X_k, \delta), \texttt{rad}_s(R_k, \delta) \Big) \end{split}$$

 $IZ_{n,k} = R_{n,k} - \omega_k X_{n,k}$

 $X_{n,k}$

 $\mathsf{R}_{\mathsf{n},\mathsf{k}}$

 $\omega_k X_{n,k}$

 \mathbf{Q} Smaller confidence radius \Box Lower regret

$$\texttt{UCB-B1:} \quad I_n \in \arg\max_{k \in [K]} \Big\{ \widehat{r}_{k, \mathsf{T}_k(n)} + \Psi_{k, \mathsf{T}_k(n)} \big(\texttt{rad}_{\mathsf{T}_k(n)}(\mathsf{X}_k, n^{-\alpha}), \texttt{rad}_{\mathsf{T}_k(n)}(\mathsf{Z}_k, n^{-\alpha}) \big) \Big\}$$

Theorem 2. (Regret Upper Bound for UCB-B1**)** Let $\sigma_k^2 = Var(Z_{k,1}) + (r^* - \omega_k)^2 Var(X_k)$ and $\Delta_k = r^* - r_k$. Then, we have: $Reg_{\pi^{B1}}(B) \le C_1 \sum_{k:\Delta_k>0} \frac{\sigma_k^2}{\Delta_k \mathbb{E}[X_k]} \log(B) + O(1)$ for $C_1 = 10.5\alpha$

Q Classical stochastic MAB regret bounds for $Var(X_{1,k}) = 0$.

$$\label{eq:approx} \mbox{ Probability Exploiting the correlation: } O\Big(\log(\mathsf{B}) \sum_{k:\Delta_k > 0} \frac{\mathsf{Cov}(\mathsf{X}_{1,k},\mathsf{R}_{1,k})}{\Delta_k} \Big) \mbox{ gain. } \mbox{ Probability Exploiting the correlation: } O\Big(\log(\mathsf{B}) \sum_{k:\Delta_k > 0} \frac{\mathsf{Cov}(\mathsf{X}_{1,k},\mathsf{R}_{1,k})}{\Delta_k} \Big) \mbox{ gain. } \mbox{ Probability Exploiting the correlation: } O\Big(\log(\mathsf{B}) \sum_{k:\Delta_k > 0} \frac{\mathsf{Cov}(\mathsf{X}_{1,k},\mathsf{R}_{1,k})}{\Delta_k} \Big) \mbox{ gain. } \mbox{ Probability Exploiting the correlation: } O\Big(\log(\mathsf{B}) \sum_{k:\Delta_k > 0} \frac{\mathsf{Cov}(\mathsf{X}_{1,k},\mathsf{R}_{1,k})}{\Delta_k} \Big) \mbox{ gain. } \mbox{ Probability Explosition: } \mbox{ Pr$$

Regret Lower Bounds: Jointly Gaussian Case

(Regret Lower Bound for Gaussian Case)

Let $(X_{k,n}, R_{k,n}) \sim \mathcal{N}(\mu_k, \Sigma_k)$ with known Σ_k . Then,

$$\liminf_{\mathsf{B}\to\infty} \, \frac{\mathsf{Reg}_{\pi}(\mathsf{B})}{\log(\mathsf{B})} \geq \sum_{\mathsf{k}:\Delta_{\mathsf{k}}>0} \frac{\sigma_{\mathsf{k}}^2}{\mathbb{E}[\mathsf{X}_{\mathsf{k},1}]\Delta_{\mathsf{k}}}$$

$$\sigma_{\mathsf{k}}^2 = \mathsf{Var}(\mathsf{Z}_{\mathsf{k},1}) + (\mathsf{r}^* - \omega_{\mathsf{k}})^2 \mathsf{Var}(\mathsf{X}_{\mathsf{k}})$$

$$\begin{array}{ll} \mbox{Recall:} & \mbox{Reg}_{\pi^{B1}}(\mathsf{B}) \leq C_1 \sum_{k:\Delta_k > 0} \frac{\sigma_k^2}{\Delta_k \mathbb{E}[\mathsf{X}_k]} \log(\mathsf{B}) + \mathsf{O}(1) \end{array}$$

Optimal regret up to a universal constant C₁ for UCB-B1.

Q Reflects the impact of variability and correlation on the regret.

Regret Lower Bounds: General Case

Let $(X_{k,n}, R_{k,n}) \sim P_{\theta_k}$ for $\theta_k \in \Theta_k$

Information geometry: For any r > 0,

$$\mathsf{D}_{\mathsf{k}}^{*}(\mathsf{r}) = \min_{\theta \in \Theta_{\mathsf{k}}} \mathsf{D}(\mathsf{P}_{\theta_{\mathsf{k}}} || \mathsf{P}_{\theta}) \text{ s.t. } \frac{\mathbb{E}_{\theta}[\mathsf{R}_{\mathsf{k},1}]}{\mathbb{E}_{\theta}[\mathsf{X}_{\mathsf{k},1}]} \geq \mathsf{r} \quad \text{(M-projection)}$$

Theorem 3. (Regret Lower Bound)

Let $D_k^* = D_k^*(\max_k r_k)$. Then, for any uniformly good policy π :

$$\liminf_{\mathsf{B}\to\infty} \, \frac{\mathsf{Reg}_{\pi}(\mathsf{B})}{\log(\mathsf{B})} \geq \frac{1}{2} \sum_{\mathsf{k}:\Delta_{\mathsf{k}}>0} \frac{\mathbb{E}[\mathsf{X}_{\mathsf{k},1}]\Delta_{\mathsf{k}}}{\mathsf{D}_{\mathsf{k}}^{\star}}$$

UCB-B1 Algorithm: Bounded Cost and Reward

<u>Known</u> 2nd-order moments, $X_{n,k} \in [0, M_X], \ R_{n,k} \in [0, M_R]$

$$\begin{split} \text{rad}_{s}(X_{k},\delta) &= \frac{2\mathsf{M}_{X}\log(\delta^{-1})}{3s} + \sqrt{\frac{2\mathsf{Var}(X_{n,k})\log(\delta^{-1})}{s}} \quad \text{Bernstein inequality (tighter than Hoeffding)} \\ & \mathsf{Reg}_{\pi^{B1}}(\mathsf{B}) \leq \mathsf{C}_{1}\sum_{k:\Delta_{k}>0} \Big(\frac{\sigma_{k}^{2}}{\Delta_{k}\mathbb{E}[X_{k}]} + (\mathsf{M}_{\mathsf{R}} + \mathsf{r}_{k}\mathsf{M}_{X}) + \frac{\mathsf{M}_{X}\Delta_{k}}{2}\Big)\log(\mathsf{B}) + \mathsf{O}(1) \end{split}$$

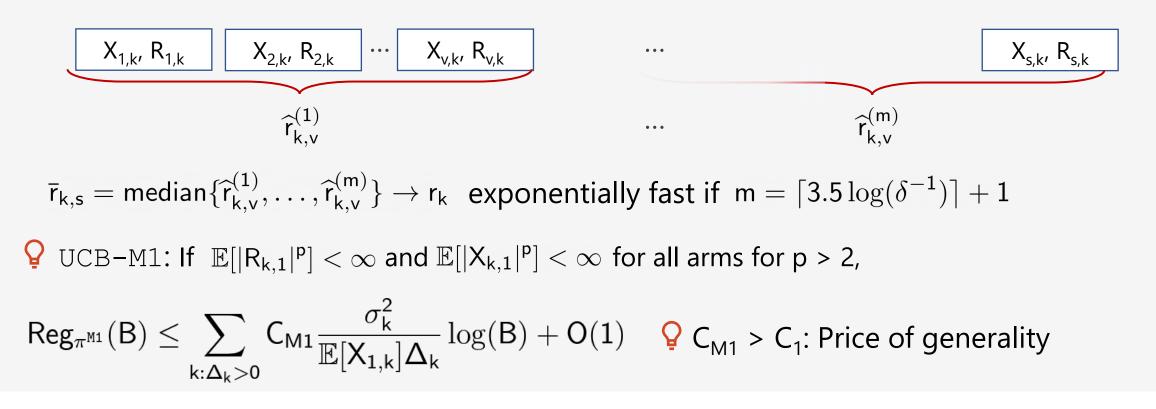
 $\sigma_{\mathsf{k}}^2 = \mathsf{Var}(\mathsf{Z}_{\mathsf{k},1}) + (\mathsf{r}^* - \omega_{\mathsf{k}})^2 \mathsf{Var}(\mathsf{X}_{\mathsf{k}})$

- \mathbf{Q} $\mathbf{M}_{\mathbf{X}}$ and $\mathbf{M}_{\mathbf{R}}$ dependence is inevitable
- **Q** Higher regret as $min(M_X, M_R)$ increases
- **Operation** Defect of the empirical estimator (Bubeck, 2012)

UCB-M1 for Heavy-Tailed Cost and Reward

- Sempirical estimation fails for HT: polynomial <u>not</u> exponential convergence rate
- P Median-based robust rate estimation (Nemirovski & Yudin, '83; Bubeck et al., '13)

Idea: Divide the data into chunks and take the median – exploit the correlation inside the chunks



UCB-B2: Using Empirical Estimates

? What if you do not know the second-order moments?

Using empirical estimates in UCB-B1 \rightarrow UCB-B2

$$\begin{split} \widehat{\mathbb{V}}_{s}(\mathsf{X}_{k}) &= \frac{1}{s} \sum_{i=1}^{s} \left(\mathsf{X}_{k,i} - \widehat{\mathbb{E}}_{s}[\mathsf{X}_{k}] \right)^{2} \to \mathsf{Var}(\mathsf{X}_{k,1}) \\ \widehat{\omega}_{k,s} &= \frac{\sum_{i=1}^{s} \left(\mathsf{X}_{k,i} - \widehat{\mathbb{E}}_{s}[\mathsf{X}_{k}] \right) (\mathsf{R}_{k,i} - \widehat{\mathbb{E}}_{s}[\mathsf{R}_{k}])}{\sum_{i=1}^{s} \left(\mathsf{X}_{k,i} - \widehat{\mathbb{E}}_{s}[\mathsf{X}_{k}] \right)^{2}} \to \omega_{k} \end{split}$$

Q Non-asymptotic analysis of using these empirical estimates: kurtosis

♀ Small $Δ_k \rightarrow UCB-B1$

Conclusions

- 1 Regret lower bound: Problem-dependent fundamental performance limit
- 2 Algorithms with tight problem-dependent regret bounds
- 3 Optimality: Optimal regret up to a constant factor in the Gaussian case
- 4 Achievability: O(log B) regret if p-moments exist for p > 2

References

- M. Harchol-Balter et al., "The Effect of Heavy-Tailed Job Size Distributions on Computer System Design", ASA-IMS Conf. on App. of Heavy Tailed Distributions in Economics, Engineering and Statistics 1999
- **A. Badanidiyuru et al.,** *"Bandits with Knapsacks"*, IEEE FOCS 2013
- **Y. Xia et al., "Thompson Sampling for Budgeted Multi-Armed Bandits", IJCAI 2015**
- **S.** Agrawal et al., "Bandits with Concave Rewards and Convex Knapsacks", ACM EC 2014
- **N. Immorlica et al., "Adversarial Bandits with Knapsacks", IEEE FOCS 2019**
- **A. Gyorgy et al.,** "Continuous Time Associative Bandits", IJACI 2007
- S. Agrawal et al., "Linear Contextual Bandits", NeurIPS 2016
- **G.** Papadimitriou et al., "The Complexity of Optimal Queueing Network Control", MOOR 1999
- **A. Slivkins, "Introduction to Multi-Armed Bandits", arXiv:1904.07272 2019**