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Introduction

In traditional bandit models, each arm pull takes a
unit time→ Violated in many real-life applications.

Clinical trials

Stock Market Investment

Online Ad Placement

Rate Adaptation 

Recommendation Systems

Influence Maximization

Stochastic Bandits

Contextual Bandits

Adversarial Bandits

Dynamic Pricing

Example: Task scheduling, free-trial strategy, etc.
Task #1 Task #2 Task #3 Task #4

(Xn(1), Rn(1)) (Xn(2), Rn(2)) (Xn(3), Rn(3)) (Xn(4), Rn(4))

Task k yields X (k)
n completion time and R(k)

n reward
after the completion. (X (k)

n , R
(k)
n ) unknown at the

time of scheduling, unknown statistics, potentially
heavy-tailed.
Objective: Maximize the expected cumulative re-
ward in a given time interval [0, τ ].
New dilemma: Complete an ongoing task vs. in-
terrupt & switch for a possibly more rewarding one?

Bandits with Interrupts - BwI

We consider a K-armed bandit model.
•Arm k ↔ (X (k)

n , R
(k)
n ) iid∼ Fk

•Heavy-tailed time and reward: For γ0 > 0,
max{E[(X (k)

1 )1+γ0],E[(R(k)
1 )1+γ0]} <∞

• Interrupt an ongoing task if it takes "too long"
time, reject the reward of that task.

•Censored bandit feedback:
πn = (k, b)⇒

(
X (k)
n ∧ b, R(k)

n I{X (k)
n ≤b}

)
for an interrupt time b ∈ B ⊂ R+

Main Problem

Reward

Time

Epoch
n

Epoch
n+1

nth task is interrupted
No reward

(n+1)th task is completed
is obtained

.	.	.

.	.	.

.	.	.

.	.	.

Minimize Regπ(τ ) = E[Rewπopt(τ )]− E[Rewπ(τ )]

Optimal Policy and Approximations

The problem is NP-hard even if all statistics are
known [1] ⇒ Approximation algorithms
Renewal reward rate: For any (k, b):

r(k)(b) =
E[R(k)

1 I{X (k)
1 ≤b}

]

E[X (k)
1 ∧ b]

Optimal interrupt time: For every k,
b∗k = sup{b : r(k)(b) ≥ r(k)(b′), b′ ∈ B}

Proposition 1. (Finite Interrupt Time)
Interruption is optimal, i.e., b∗k <∞, iff

E[X (k)
1 − b|X

(k)
1 > b] > E[X (k)

1 ],
holds for some b <∞.
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Optimal static policy: At every epoch n, pull
(k, b) with largest reward rate:

π∗n = arg max
(k,b)

r(k)(b)

Proposition 2. (Optimality Gap for π∗)
For any τ > 0, the optimality gap for π∗:

E[Rewπopt(τ )]− E[Rewπ∗(τ )] ≤ O(1).
Thus, π∗ is asymptotically optimal as τ →∞.

UCB-BwI Algorithm

We consider a finite but arbitrary
B = {b1, b2, . . . , bL =∞︸ ︷︷ ︸

no interrupt
}.

• Strategy: For each (k, b), use upper confidence
bounds for r(k)(b) as a surrogate.

• Challenge: X (k)
n and R(k)

n can be heavy-tailed.

The first candidate is empirical reward rate:

r̂(k)
s (b) =

s∑
i=1
R

(k)
i I{X (k)

i ≤b}

s∑
i=1

(X (k)
i ∧ b)

−→
s→∞

r(k)(b), a.s.

Convergence rate is polynomial, not exponential:

P
(
r̂(k)
s (bL) ≤ r(k)(bL)−∆0(ε)

)
= O

( 1
sγε1+γ

)
.

• Robust median-of-means estimation: For
w =

⌊
8 log(e1

8δ−1) ∧ s
2
⌋
and m = b swc,

M(U1:s) , med
{ 1
m

m∑
i=1

Ui, . . . ,
1
m

wm∑
i=(w−1)m+1

Ui

}
.

Median boosts the performance of the weak
empirical estimator [2].

r̄(k)
s (b) =

M
(
R

(k)
i I{X (k)

i ≤b}
: i ≤ s

)
M
(
X

(k)
i ∧ b : i ≤ s

) .

Exponential convergence rate is achieved despite
heavy-tails.

• Information structure: Feedback for (k, bj) is
available for (k, bl) if l ≤ j. Boosted convergence

Algorithm: UCB-BwI
At epoch (n + 1), sk,l observations for (k, bl).
Then, UCB-BwI makes a decision as follows:(
In+1, B

(In+1)
n+1

)
∈ arg max

(k,bl)

{
r̄(k)
n,sk,l

(bl)+
(1 + r)εn,sk,l
µ + εn,sk,l

}
where r ≥ r(k)(b), µ ≤ E[X (k)

1 ∧ b] for all k, b and

εn,s = β
[log

(
2e1

8(n + 1)4)
s

] γ
1+γ
,

for γ = min{γ0, 1} and some β > 0.

Performance Analysis

• Regret upper bound for UCB-BwI:
Theorem 1. (Regret Bound for UCB-BwI)
Regret under UCB-BwI for any τ > 0 satisfies:

Regπ(τ ) ≤
∑

k:d(k)>0

Ck log
(
τ
)

+ O(KL),

where
Ck = O

(( 1
d

(k)
min

)1
γ +
( 1
d(k)

)1
γ

)
,

d
(k)
min ≤ r(k)(b∗k)− r(k)(bl) and d(k) = r∗ − r(k)(b∗k)

Info. structure ⇒ log(τ ) term independent of L.

• Regret lower bound:
Theorem 2. (Regret Lower Bound)
Under any "good" policy π that makes only o(nα)
suboptimal decisions in n epochs, we have

Regπ(τ ) = Ω
(
K log(τ )

)
Matching bounds for UCB-BwI ⇒ order optimality

Numerical Results
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(a) Tails are important: Gains by
interruption for heavy-tailed X (k)
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(b) Low regret despite large B:
Exploiting information structure

Conclusions
We incorporated time dimension into bandits.
•Heavy-tailed completion time ⇒ Interrupt +
novel dynamics

•There is an underlying information structure from
temporal dynamics.

• UCB-BwI: Θ(K log(τ ) + KL) regret
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