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Introduction

In traditional bandit models, each arm pull takes a
unit time — Violated in many real-lite applications.
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Adversarial Bandits

Example: Task scheduling, free-trial strategy, etc.
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Task k yields qu@ completion time and Rq(q,k) reward
after the completion. (quk), Rﬁf”) unknown at the
time of scheduling, unknown statistics, potentially
heavy-tailed.

Objective: Maximize the expected cumulative re-
ward in a given time interval |0, 7).

New dilemma: Complete an ongoing task vs. in-
terrupt & switch for a possibly more rewarding one’

Bandits with Interrupts - BwI

We consider a K-armed bandit model.
« Arm k < (Xf,(zk), RSP) )
» Heavy-tailed time and reward: For vy > 0,
. k o T k ;
max{E[(X{") ], E[(R")*]} < oo

» Interrupt an ongoing task if it takes "too long'

time, reject the reward of that task.

« Censored bandit teedback:
T = (k,0) = (X A b, RMT
for an interrupt time b € B C R..

{Xq(f)gb})
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Main Problem

Reward (n+1)t™ task is completed
| Rf,(ﬁzl is obtained
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Minimize Reg_(7) = E[Rewqo(7)] — E[Rew,(T)]

Optimal Policy and Approximations

The problem is NP-hard even if all statistics are
known |1| = Approximation algorithms

Renewal reward rate: For any (&, b):
ok
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Optimal interrupt time: For every k,

bt = sup{b : r'®(b) > rF W), v € B}

Proposition 1. (Finite Interrupt Time)

Interruption is optimal, i.e., b; < oo, il

X - b > 0] > Bl

holds for some b < 0.
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Optimal static policy: At every epoch n, pull
(k,b) with largest reward rate:

_— ) (p
T, = argmax (b)

Proposition 2. (Optimality Gap for 7*)

For any 7 > 0, the optimality gap for 7*:
| Rew ot (T)] — E|Rew+(7)] < O(1).

Thus, 7* is asymptotically optimal as 7 — 0.
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UCB-BwI Algorithm

We consider a finite but arbitrary
B:{bl,bg,..., bL:OO }
.H/_/
no mterrupt

« Strategy: For each (k,b), use upper confidence
bounds for r*)(b) as a surrogate.

« Challenge: Xék) and Rgﬂ) can be heavy-tailed.

The first candidate is empirical reward rate:
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Convergence rate is polynomial, not exponential:

P8 (by) < r®(br) — Ag(e)) = o(
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= Robust median-of-means estimation: For

w= |8 log(esd~1) A | and m = |£],
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Median boosts the performance of the weak
empirical estimator |2|.

M(R”Ek)H{XZ.(k)gb} 1 < S)

M(XMAb: i <s)
Exponential convergence rate is achieved despite

(b) =

heavy-tails.

» Information structure: Feedback for (k, b;) is
available for (k, ;) if [ < j. Boosted convergence

Algorithm: UCB-BwI

At epoch (n + 1), sj; observations for (k,b;).
Then, UCB-BwI makes a decision as follows:

B (1+ 7)€,
I N BT(L]nH) € arg max {szkg (bl) | : k,l}
( + +1 ) (k’bl) 9 k,l ILL _|_ €n73k,l

where > r®)(b), u < E[X" Ab] for all k, b and

[log (26%(n +- 1)4)} e
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for v = min{~y, 1} and some 5 > 0.

Performance Analysis

 Regret upper bound for UCB-BwI:

Theorem 1. (Regret Bound for UCB-BwI)

Regret under UCB-BwI for any 7 > 0 satisfies:
Reg(r) < " Cilog (r) + O(KL),

¥ < By — 1 (b)) and dF) = 1 — rF) ()

J

[nfo. structure = log(7) term independent of L.

 Regret lower bound:

Theorem 2. (Regret Lower Bound)

Under any "good" policy 7 that makes only o(n®)
suboptimal decisions in n epochs, we have

Reg, (1) = QK log(7))

Matching bounds for UCB-BwI = order optimality

Numerical Results
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(a) Tails are important: GGains by (b) Low regret despite large B:

interruption for heavy-tailed x®  Exploiting information structure

Conclusions

We incorporated time dimension into bandits.

» Heavy-tailed completion time = Interrupt +
novel dynamics

« There is an underlying information structure from
temporal dynamics.

» UCB-BwI: O(K log(71) + K L) regret
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