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ABSTRACT
We consider a bandit problem with K task types from which the

controller activates one task at a time. Each task takes a random and

possibly heavy-tailed completion time, and a reward is obtained

only after the task is completed. The task types are independent

from each other, and have distinct and unknown distributions for

completion time and reward. For a given time horizon τ , the goal of
the controller is to schedule tasks adaptively so as to maximize the

reward collected until τ expires. In addition, we allow the controller

to interrupt a task and initiate a new one. In addition to the tradi-

tional exploration-exploitation dilemma, this interrupt mechanism

introduces a new one: should the controller complete the task and

get the reward, or interrupt the task for a possibly shorter and

more rewarding alternative? We show that for all heavy-tailed and

some light-tailed completion time distributions, this interruption

mechanism improves the reward linearly over time. From a learning

perspective, the interrupt mechanism necessitates implicitly learn-

ing statistics beyond the mean from truncated observations. For this

purpose, we propose a robust learning algorithm named UCB-BwI
based on the median-of-means estimator for possibly heavy-tailed

reward and completion time distributions. We show that, in a K-
armed bandit setting with an arbitrary set of L possible interrupt

times, UCB-BwI achieves O(K log(τ ) + KL) regret. We also prove

that the regret under any admissible policy is Ω(K log(τ )), which
implies that UCB-BwI is order optimal.
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1 INTRODUCTION
In many real life problems, a server processes tasks with random

completion times that are unknown in advance, and the controller

schedules these tasks so as to maximize the number of task comple-

tions in a given time interval. The service time distribution is often

heavy-tailed in many economic, social and technological systems,

which implies that the mean residual time to complete a task grows

over time [2, 6]. As a consequence, in addition to the conventional

exploration-exploitation dilemma considered in [1, 7], the controller

faces with a new dilemma: after initiating a task, should it wait until

completion and gather the reward, or make a new decision that

could possibly serve faster at the expense of rejecting the reward

and wasting the time already spent? As we show in this work, this

interruption mechanism becomes crucial for optimal performance.

In this paper, we model this reward maximization problem as a

continuous-time multi-armed bandit (MAB) problem with possibly

heavy-tailed reward and completion time distributions, in which

the controller has the option to interrupt a task at any time and

make a new decision. The applications of this model include task

scheduling, adaptive routing and online learning for optimal free

trial duration in advertising.

2 PROBLEM FORMULATION
We consider a set ofK statistically independent task types (or arms),

denoted byK = {1, 2, . . . ,K}. Each arm corresponds to a stochastic

process {(X
(k )
n ,R

(k )
n ), n ≥ 1}. If arm k is activated (i.e., a task of

type k is initiated) at the time of n-th decision, it takes a random

completion time X (k )
n > 0 to obtain the reward R

(k )
n ≥ 0 at the end.

For a given time horizon τ > 0, the sequential decision-making

continues until the time expires. Both X
(k )
n and R

(k)
n are unknown

to the controller when the decision is made. The stochastic process

{(X
(k )
n ,R

(k )
n )} corresponding to armk is independent and identically

distributed (iid) over n, therefore it is a renewal reward process. We

assume that X
(k )
n and R

(k )
n are independent random variables, and

the following moment condition is satisfied by all arms:

max{E[(X
(k )
1

)1+γ ],E[(R
(k )
1

)1+γ ]} < ∞, ∀k ∈ K, (1)

for some γ ∈ (0, 1]. Therefore, the model includes heavy-tailed

reward and completion time distributions.

In this problem, the controller has to make two decisions: the

task type and the interrupt time. Let B ⊂ R+ be the set of interrupt
times that will be specified later. A policy π = {πn }

∞
n=1 consists

of two parts: πn = (In ,B
(In )
n ) ∈ K × B. A decision πn = (k,b)

implies that a task of type k is activated at the time of n-th decision,

and an interrupt time of b time units from the activation time is

declared. For a control πn = (k,b), the completion time of a task is

(X
(k )
n ∧ b), the reward is R

(k )
n I{X (k )

n ≤b } . Therefore, the problem at
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hand is an exploration-exploitation problem in which the learning

is conducted via right-censored feedback.

For a given admissible policy π , the counting process Nπ (τ ) is
the total number of completed tasks in [0,τ ]. Then, the cumulative

reward under π is as follows:

Rewπ (τ ) =

Nπ (τ )∑
n=1

∑
(k,b)∈K×B

I{πn=(k,b)}R
(k )
n I{X (k )

n ≤b } . (2)

The objective in this paper is to design online learning algorithms

that maximize the expected cumulative reward, or equivalently

minimize regret, which is defined as follows:

Reдπ (τ ) = max

π ′
E[Rewπ ′ (τ )] − E[Rewπ (τ )]. (3)

where the maximization is over the set of all admissible policies. The

regret of a policy π is the loss suffered due to suboptimal decisions

in both arm and interrupt time selection.

3 OPTIMAL POLICY WITH KNOWN
STATISTICS

Note that this is an extension of the stochastic knapsack problem,

and the solution is NP-hard even if all distributions are known [4].

As an approximation, consider the following policy π∗
: at each

epoch, make the decision (k,b) that maximizes the reward rate

r (k)(b), which is defined as follows:

r (k)(b) =
E[R

(k )
1
I
{X (k )

1
≤b }]

E[X
(k)
1

∧ b]
. (4)

We have the following optimality gap for the optimal static policy

π∗
:

max

π
E[Rewπ (τ )] − E[Rewπ ∗ (τ )] ≤ 2max

k ∈K
E[R

(k )
1

], ∀τ > 0.

Consequently, π∗
is asymptotically optimal as τ → ∞.

The optimal interrupt time for arm k is the following:

b∗k = sup{b ∈ B : r (k )(b) ≥ r (k)(b ′),∀b ′ ∈ B}. (5)

We show that interrupting a task before its completion is optimal,

i.e., b∗k < ∞ if and only if E[X
(k )
1

− b |X
(k )
1
> b] > E[X

(k)
1

] holds

for some b > 0. Note that all heavy-tailed and some light-tailed

completion time distributions (such as hyperexponential) satisfy

this condition, and thus require a finite optimal interrupt time.

In the next section, we propose a UCB-type algorithm for learn-

ing the optimal (k,b∗k ) pair.

4 ALGORITHM DESIGN
We consider a finite set of interrupt times B = {b1,b2, . . . ,bL}
such that b1 ≤ b2 ≤ . . . ≤ bL = ∞ without loss of generality. In

the absence of the reward rates r (k )(b), we propose an algorithm

named UCB-BwI to learn (k,bl ) pair with the highest reward rate.

4.1 Information Structure
The problem has a specific information structure as follows. For an

arm k , if an interrupt decision bl ′ ≥ bl is made, then the feedback

gives full information for the decision (k,bl ) as well. If we denote

the number of (k,bl ) decisions at the end of n-th epoch by T
(k )
l (n),

the effective sample size is T
(k)
l (n) =

∑
j≥l T

(k)
j (n), which might be

significantly larger than T
(k )
l (n).

4.2 UCB-BwI Algorithm and Regret Bound
Since X

(k )
n and R

(k)
n can be potentially heavy-tailed, we construct a

UCB-type policy based on the median-of-means estimator [3]. At

epoch (n + 1), given that there are sk,l = T
(k )
l (n) observations for

(k,bl ), we compute median-of-means estimators U
(k)
n,sk,l (bl ) and

V
(k )
n,sk,l (bl ) for (X

(k )
i ∧ bl ) and (R

(k )
i I{X (k )

i ≤bl }
), respectively. Then,

the UCB-BwI Algorithm makes a decision as follows:(
In+1,B

(In+1)
n+1

)
∈ argmax

(k×bl )∈K×B

{V (k )
n,sk,l (bl )

U
(k )
n,sk,l (bl )

+
(1 + r )ϵn,sk,l
µ + ϵn,sk,l

}
,

where r ≥ r (k )(b), µ ≤ E[X
(k )
1

∧ b] for all (k,b), and

ϵn,s = β
[
log

(
2e

1

8 (n + 1)4
)

s

] γ
1+γ
,

for some β > 0.

In the following, we present a distribution-dependent regret

upper bound for UCB-BwI.

Theorem 4.1 (Regret Upper Bound for UCB-BwI). The regret
under UCB-BwI satisfies the following for all τ > 0:

Reдπ BwI (τ ) ≤
∑

k :d (k )>0

[
C(k )

log

( τ
µ

)
+O

( L(
d
(k )
min

) 1

γ

)]
+O(KL),

where

C(k ) = C1

(
1 + r

µ

) γ +1
γ

[ ( 1

d
(k )
min

) 1

γ +
( 1

d(k )

) 1

γ
]
,

for some constant C1 > 0, d(k )min = min

l :bl,b∗
k

{
r (k)(b∗k ) − r (k )(bl )

}
and

d(k) = max(k ′,b) r
(k ′)(b) − r (k )(b∗k ).

According to Theorem 4.1, the regret grows at a rate O(K log(τ ) +
KL). As a result of the specific information structure, the coefficient

of the time-dependent term in the regret, C(k )
, is independent of

L = |B|.

By using a similar approach to [5], we also show that the regret

has a lower bound Ω(K log(τ )). Together with Theorem 4.1, this

implies that UCB-BwI is order optimal in K ,L and τ .
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