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Multi-Armed Bandits

Prominent model for exploration and exploitation dilemma since 1933. 

What are we investigating?

• Time dimension into multi-armed bandits as required by many applications

• Very general time and reward distributions including heavy-tailed distributions

• Novel dynamics + new dilemma



Multi-Armed Bandits: Applications

Traditional bandit models have a broad area of applications:

1 Stochastic bandits [Lai & Robbins, ’85], 

[Auer, ‘02], [Agrawal, ‘11], [Bubeck, ’12a]

2 Contextual bandits [Dudik, ‘11], [Slivkins, ‘14]

3 Budgeted bandits [Gyorgy, ‘07], [Tran-Tranh, ‘10], 

[Badanidiyuru, ‘13], [Combes, ‘15], [Xia, ‘15]

• Cost and reward in [0, 1]

• No interrupt mechanism

• Limited control

Heavy-tailed reward [Bubeck, ’12b], [Zhao, ‘11]

Linear bandits [Dani, ‘08], [Abbasi-Yadkori, ‘11]



In the classical stochastic bandit model: 

▪ Discrete time: Each arm pull takes a unit time for all arms. 

▪ Control: Choose an arm In among {1, 2, …, K} 

▪ Goal: Maximize cumulative reward in t units of time.

▪ Optimal policy: Arm with maximum expected reward.

Recap: Classical Stochastic Multi-Armed Bandit Problem

Unit time

1st-order statistics

▪ Learning: Upper confidence bound (UCB), ϵ-greedy [Auer ’02], 

Thompson sampling [Agrawal, ‘11], IDS [Russo, ‘14]

Q: Is it always valid?



Non-clairvoyant task scheduling with K task types and single server.

▪ Type-k task takes a random completion time Xn
(k).

▪ A random reward Rn
(k) is obtained once the task is completed.

▪ For a time budget t, maximize total reward in [0, t]

▪ Completion time might be heavy-tailed [Harchol-Balter, ‘99]

▪ What if the completion time is “too long”? Should I wait?

▪ Optimal policy?

Time Dimension in Bandits: Task Scheduling Example

?

▪ Existing MAB models fall short for this application.

Type 1 Type 2 Type 3 Type K

…



Time Dimension in Bandits: Applications

There are many other applications that have similar time-dependence. Here are some examples:

1 Adaptive routing in telecommunications:

• K parallel channels, transmit over one at a time, bandit feedback

• Transmission time of nth packet over channel k: Xn
(k) (heavy-tailed [Asmussen, ‘10])

• Goal: Maximize throughput within [0, t], i.e., Rn
(k) = 1

2 Online free trial strategy for advertising:

• Type-k user’s free-to-paid conversion time: Xn
(k)

• Price of the product Rn
(k)

• Free riders > Interrupts Data from madkudu.com

Channel 1

Channel K

…



Bandits with Interrupts (BwI)

1 Arms: Arm k ↔ renewal reward process

There exists a γ > 0 such that:

Remark: Variance might be infinite.

2 Control: If an arm pull / task takes too long 

time, the controller might interrupt.

3 Objective: Minimize regret in [0, t].

Feedback: Censored. For a decision (k, b)

Xn
(k)

Rn
(k)

Rewp(t)

Xn
(k)

b

start of nth epoch interrupted

Rn
(k)

rejectednth epoch

t

New control: Interrupt time
where

Number of comp. tasks

New dilemma: Should it interrupt an ongoing cycle and reject the reward for a more rewarding alternative, or wait and gather the reward? 

Classical dilemma: Explore or Exploit? 



Optimal Policy with Known Statistics: Complexity

BwI problem is NP-hard even if all statistics are 

known.

Wanted: Approximation algorithms

To find an approximation algorithm:

1 Consider a renewal reward process (Xn, Rn).

By the key renewal theorem, we have:

(See [Asmussen, ‘08] and [Gut, ‘09])

2 For an action (k, b), the renewal reward rate is defined as follows:

Interpretation: Reward per unit time if (k, b) is persistently chosen.



Optimal Policy with Known Statistics: A Good Static Approximation

Approximation algorithm: Pull (k, b) with the largest 

reward rate persistently until the time budget is depleted.

for all n.

Proposition 1. (Optimality Gap for p*)

For any t > 0, the following inequality holds for the static policy p* :

Consequently, p* is asymptotically optimal as t →∞.

? How well does p* approximate the optimal policy popt ?

The static policy p* has some nice properties:

1 Low complexity, time-invariant.

2 The optimality gap with popt is bounded for all t > 0.

The optimal policy popt is NP-hard.

Appropriate for low-regret learning algorithms.✓

Challenge: r(k)(b) depends on the tails, not only mean. 



Renewal reward rate for (k, b):

Optimal Policy with Known Statistics: Optimal Interrupt Time

Does interruption improve reward rate??

Proposition 2. (Optimal Interrupt Time)

Interruption at a finite time is optimal, i.e., bk
* ≠∞, if and only if the 

following holds for some b < ∞:

1 All heavy-tailed and some light-tailed completion time distributions 

lead to a finite optimal interrupt time. 

Interruption is optimal if the mean residual life at some time b is 

larger than the mean completion time of a fresh new cycle.

For correlated (Xn
(k), Rn

(k)), the condition becomes the following:

2 Exponential distribution acts as a barrier case: memoryless property 

leads to indifference to interruption.

3 Most light-tailed distributions (folded Gaussian, uniform, logistic, 

gamma) have decreasing MRL, thus no interrupt is optimal.

All have the same mean → Tails are important

Rn = 1, Xn ~ Exp(1/6)



Renewal reward rate for (k, b):

Optimal Policy with Known Statistics: Optimal Interrupt Time

Does interruption improve reward rate??

Proposition 2. (Optimal Interrupt Time)

Interruption at a finite time is optimal, i.e., bk
* ≠∞, if and only if the 

following holds for some b < ∞:

1 All heavy-tailed and some light-tailed completion time distributions 

lead to a finite optimal interrupt time. 

Interruption is optimal if the mean residual life at some time b is 

larger than the mean completion time of a fresh new cycle.

For correlated (Xn
(k), Rn

(k)), the condition becomes the following:

2 Exponential distribution acts as a barrier case: memoryless property 

leads to indifference to interruption.

3 Most light-tailed distributions (folded Gaussian, uniform, logistic, 

gamma) have decreasing MRL, thus no interrupt is optimal.

All have the same mean → Tails are important

Rn = 1, Xn ~ Uniform(0, 12)



Renewal reward rate for (k, b):

Optimal Policy with Known Statistics: Optimal Interrupt Time

Does interruption improve reward rate??

Proposition 2. (Optimal Interrupt Time)

Interruption at a finite time is optimal, i.e., bk
* ≠∞, if and only if the 

following holds for some b < ∞:

1 All heavy-tailed and some light-tailed completion time distributions 

lead to a finite optimal interrupt time. 

Interruption is optimal if the mean residual life at some time b is 

larger than the mean completion time of a fresh new cycle.

For correlated (Xn
(k), Rn

(k)), the condition becomes the following:

2 Exponential distribution acts as a barrier case: memoryless property 

leads to indifference to interruption.

3 Most light-tailed distributions (folded Gaussian, uniform, logistic, 

gamma) have decreasing MRL, thus no interrupt is optimal.

All have the same mean → Tails are important

Rn = 1, Xn ~ Pareto(1, 1.2)



Algorithm Design: Preliminaries

Objective: For all (k, b) actions, learn the reward rate:

Strategy: Use upper confidence bound as a surrogate for r(k)(bl)

1 Find concentration inequalities for 

reward rate.

Need: Estimators that provide 

exponential convergence rate despite the 

heavy tails.

2 Exploit the information structure 

imposed by the temporal dynamics.

There is an information sharing between 

different (k, b) actions based on 

observability.

3 Propose UCB-BwI for the online learning 

problem.

Based on the concentration inequalities, exploit 

the information structure for low-regret.

Assumption: Finite but arbitrary set of interrupt times

Imposed by the nature: CPU scheduling, 1/3/7/14 days in free trials, etc.

Far beyond the first-order statistics unlike classical MAB.



First candidate: Empirical reward rate [Asmussen, ‘08], [Karlin, ‘83]

Concentration Inequalities for Renewal Processes

For each (k, bl), the median-of-means estimator for the reward rate r(k)(bl):

Problem: Heavy-tailed completion time and reward

Convergence rate is polynomial, not exponential (Chebyshev)

for                            . Bound is tight [Catoni, ’10, Bubeck ‘12].

Cause: Outliers due to the heavy tails pull the sample mean 

away from the ensemble mean.

Fix: Robust median-of-means estimator [Nemirovski, ‘82], [Bubeck, ‘12]

Given {Ui: i = 1, 2, …, s},                                       and 

Proposition 3. (Conc. Ineq. for Renewal Reward Processes)

For any decision (k, b) and                 ,

where 

Exponential convergence rate

Sub-Gaussian (optimal) accuracy-confidence tradeoff if g = 1 [Bubeck, ’12b] 

✓

Wanted: UCB for



Information structure:

UCB-BwI Algorithm

These questions can be answered for all b’ ≤ b by this feedback [Observability]

Action (k, b) increases the sample size for all (k, b’) such that b’ ≤ b.

is the effective sample size → information structure

• Is Xn
(k) smaller than b?

• If so, values of Xn
(k) and Rn

(k)

Feedback

Information sharing

UCB-BwI Algorithm

At epoch (n+1), UCB-BwI Algorithm makes a decision as follows: 

where

Formally,



Performance Analysis: Regret Bounds for UCB-BwI

Theorem 1. (Regret Upper Bound for UCB-BwI)

Regret under UCB-BwI satisfies the following bound for all t > 0:

where

1 Dealing with asynchronous decisions: regret rate

Logarithmic regret in t.  

2 Dealing with randomness of Np(t): High prob. upper bounds for Np(t) 

3 Number of suboptimal decisions in 2t/m epochs: Bandit analysis + 

information structure

Let

Action space: O(K x L) but Ck is O(K) as a result of info structure.

(Suboptimality in k)

(Suboptimality across k)

Proof Sketch: Asynchronous decisions + random number of trials

Matching lower bound of order W(K log t) → order optimality



Performance Analysis: Numerical Results

Task scheduling with heterogeneous statistics

1 If no interrupts, arms 2 and 3 are 

equally better than arm 1. Optimal 

interruption → arm 1 optimal

2 Monotone interrupt set

Logarithmic regret

Despite x48 expansion of the action space, only little increase in the 

regret as a result of the information structure



Conclusions

1 Presented BwI framework to incorporate time dimension into sequential learning.

2 General completion time and reward distributions: Interruption as a new control

3 Non-parametric learning algorithm UCB-BwI that achieves order optimality in all parameters t, K, L


