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Multi-Armed Bandits

Prominent model for exploration and exploitation dilemma since 1933.

ON THE LIKELIHOOD THAT ONE UNKNOWN
PROBABILITY EXCEEDS ANOTHER IN VIEW
OF THE EVIDENCE OF TWO SAMPLES.

By WILLIAM R. THOMPSON. From the Department of Pathology,
Yale University.

Section 1.

IN elaborating the relations of the present communication interest was not

centred upon the interpretation of particular data, but grew out of a general
[ L1 e b alosming Taose thic saind of vicw ihass aan ha na

What are we investigating?

» Time dimension into multi-armed bandits as required by many applications
* Very general time and reward distributions including heavy-tailed distributions

* Novel dynamics + new dilemma



Multi-Armed Bandits: Applications

Traditional bandit models have a broad area of applications:

Stochastic bandits [Lai & Robbins, '85],
[Auer, '02], [Agrawal, ‘11], [Bubeck, "12a]

Heavy-tailed reward [Bubeck, '12b], [Zhao, "11]

Contextual bandits [Dudik, ‘11], [Slivkins, ‘14] [IILANNEN amazon

Linear bandits [Dani, '08], [Abbasi-Yadkori, ‘11] HBONOW hul:

Budgeted bandits [Gyorgy, '07], [Tran-Tranh, '10],
[Badanidiyuru, "13], [Combes, ‘15], [Xia, "15]

* Cost and reward in [0, 1]
* No interrupt mechanism

* Limited control



Recap: Classical Stochastic Multi-Armed Bandit Problem

In the classical stochastic bandit model:

Q: Is it always valid?

» Discrete time: Each arm pull takes a unit time for all arms.

= Control: Choose an arm |, among {1, 2, ..., K}

= Goal: Maximize cumulative reward in t units of time.

T

E[Rew,(r)] =E[> R

60 -
n=1 50 4 J
= Optimal policy: Arm with maximum expected reward. 20
7Pt — argmax E[R(] § 30 41—/_,7
1st-order statistics 20 - =
—
Unit time
= Learning: Upper confidence bound (UCB), e-greedy [Auer '02], .
Thompson sampling [Agrawal, “11], IDS [Russo, '14] 04
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Time Dimension in Bandits: Task Scheduling Example

Type 1

Non-clairvoyant task scheduling with K task types and single server.

Type 2

» Type-k task takes a random completion time X,®. £ £

* Arandom reward R ®is obtained once the task is completed.

» For a time budget t, maximize total reward in [0, 1] @

= Completion time might be heavy-tailed [Harchol-Balter, '99]

40
= What if the completion time is “too long“? Should | wait? o o
R{WY
e |« >
= Optimal policy? S . ng)
Q
k k -
0 Ry E[R;")]
° argmax E[R)’] argmax E Too| argmax o
k kLS o EXY] 10+
= Existing MAB models fall short for this application. o1 . . |
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Time Dimension in Bandits: Applications

There are many other applications that have similar time-dependence. Here are some examples:

a Adaptive routing in telecommunications:

a Online free trial strategy for advertising:

K parallel channels, transmit over one at a time, bandit feedback

Transmission time of nth packet over channel k: X, (heavy-tailed [Asmussen, ‘10])

Goal: Maximize throughput within [0, 1], i.e.,, R,® = 1

Type-k user’s free-to-paid conversion time: X,®

Price of the product R,®

Free riders > Interrupts

Channel 1

(‘A))_ 7

Cumulative % of customers who convert

Channel K

Cumulative SaaS free-to-paid conversions
100.0%

750%

50.0%

Sales Acceleration

25.0%

0.0%
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Days after customer signup

Data from madkudu.com



Bandits with Interrupts (BwI)

35r ¢ nth epoch
S
- A
k
R0
1_
X 00

o it

4 8 12

a Arms: Arm k < renewal reward process

(ng)’ ng)) ~ E)

There exists a y > 0 such that:

max {E[(X(9)*7], E[(R¥) ]} < o0

Q Remark: Variance might be infinite.

Classical dilemma: Explore or Exploit?

A A

\ 4

start of nth epoch interrupted rejected

Rew,_ (1)

Reward

Time

e Control: If an arm pull / task takes too long e Objective: Minimize regret in [0, 1].

time, the controller might interrupt.

o = (In, B{) €

New control: Interrupt time

Feedback: Censored. For a decision (k, b)

(X A b, RIOT

K xB

x® Sb})

Reg_(7) = E[Rewor (7)] — E[Rew, (7)]

where
Number of comp. tasks
N, (1)
Rew, (1) = Z Rgln)ﬂ{xﬁ'")gsﬁ'")}
n=1

New dilemma: Should it interrupt an ongoing cycle and reject the reward for a more rewarding alternative, or wait and gather the reward?



Optimal Policy with Known Statistics: Complexity

Q BwI problem is NP-hard even if all statistics are

known.

Wanted: Approximation algorithms

To find an approximation algorithm:

G Consider a renewal reward process (X, R.). 0 For an action (k, b), the renewal reward rate is defined as follows:
By the key renewal theorem, we have: "
' E[R,] r(b) = E[Ex](lkgxif]b}]
n
E[; Rn} = EX,] T 4 0o(T) "

Interpretation: Reward per unit time if (k, b) is persistently chosen.

(See [Asmussen, '08] and [Gut, '09])



Optimal Policy with Known Statistics: A Good Static Approximation

Approximation algorithm: Pull (k, b) with the largest

reward rate persistently until the time budget is depleted.

= arg ?'if]l%( r (b)

*k
7TI"I

for all n.

a How well does " approximate the optimal policy nort?

The static policy n° has some nice properties:

a Low complexity, time-invariant.

e The optimality gap with n°Pt is bounded for all © > 0.

Q The optimal policy n°Pt is NP-hard.

Q Challenge: ri¥(b) depends on the tails, not only mean.

Proposition 1. (Optimality Gap for =*)

For any t > 0, the following inequality holds for the static policy =" :
E[Rew op: (T)] — E[Rew,« (7)] = O(1),

Consequently, n" is asymptotically optimal as t —oo.

Appropriate for low-regret learning algorithms.




Optimal Policy with Known Statistics: Optimal Interrupt Time

()
BRe Lix <y
E[X{ A b]

Q Renewal reward rate for (k, b): r(k) (b) =

a Does interruption improve reward rate?

x (k)
by max r (b)

Proposition 2. (Optimal Interrupt Time)

Interruption at a finite time is optimal, i.e., b, #oo, if and only if the

following holds for some b < co:

EX® — bx{ > b] > EX]

Q Interruption is optimal if the mean residual life at some time b is
larger than the mean completion time of a fresh new cycle.

Q For correlated (X, R ), the condition becomes the following:

ER" - bX{ >b] E[R{"
© 0 R—Y
EX® —bx¥F >b]  EXY]

c All heavy-tailed and some light-tailed completion time distributions
lead to a finite optimal interrupt time.

0 Exponential distribution acts as a barrier case: memoryless property
leads to indifference to interruption.

e Most light-tailed distributions (folded Gaussian, uniform, logistic,
gamma) have decreasing MRL, thus no interrupt is optimal.

R, =1, X, ~ Exp(1/6)
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Q All have the same mean — Tails are important



Optimal Policy with Known Statistics: Optimal Interrupt Time

k
sy ERVLo )]
Q Renewal reward rate for (k, b): r (b) = 0 — c All heavy-tailed and some light-tailed completion time distributions
E[X" A b] lead to a finite optimal interrupt time.
a Does interruption improve reward rate?
b* = max r® (b) 0 Exponential distribution acts as a barrier case: memoryless property
k beB leads to indifference to interruption.

Proposition 2. (Optimal Interrupt Time)

e Most light-tailed distributions (folded Gaussian, uniform, logistic,

Interruption at a finite time is optimal, i.e., b,” £, if and only if the . : . :
P P 7 y gamma) have decreasing MRL, thus no interrupt is optimal.

following holds for some b < co:
R, =1, X, ~ Uniform(0, 12)

EX® — bx{ > b] > EX]

0.35

0.30

Q Interruption is optimal if the mean residual life at some time b is o

larger than the mean completion time of a fresh new cycle. §Zi:
0.10
Q For correlated (X, R ), the condition becomes the following: 0.05
) 0-00 25 5.0 7.5 10.0 125 15.0 17.5 20.0
ER” —bX;” > b] _ E[R{"] “

E[ng) _ b|X§k) > b] E[ng)] Q All have the same mean — Tails are important



Optimal Policy with Known Statistics: Optimal Interrupt Time

()
BRe Lix <y
E[X{ A b]

Q Renewal reward rate for (k, b): r(k) (b) =

a Does interruption improve reward rate?

x (k)
by max r (b)

Proposition 2. (Optimal Interrupt Time)

Interruption at a finite time is optimal, i.e., b, #oo, if and only if the

following holds for some b < co:

EX® — bx{ > b] > EX]

Q Interruption is optimal if the mean residual life at some time b is
larger than the mean completion time of a fresh new cycle.

Q For correlated (X, R ), the condition becomes the following:

ER" - bX{ >b] E[R{"
© 0 R—Y
EX® —bx¥F >b]  EXY]

c All heavy-tailed and some light-tailed completion time distributions
lead to a finite optimal interrupt time.

0 Exponential distribution acts as a barrier case: memoryless property
leads to indifference to interruption.

e Most light-tailed distributions (folded Gaussian, uniform, logistic,
gamma) have decreasing MRL, thus no interrupt is optimal.

R, =1, X, ~ Pareto(1, 1.2)
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Algorithm Design: Preliminaries

0.40
Objective: For all (k, b) actions, learn the reward rate:
E R(k)]I 0.351
k
r(k)(b) = [ " {X'(‘ )Sb}] 0.30 1
E[X{ A b]
0.25 1
Q Far beyond the first-order statistics unlike classical MAB. S o0
0.15
Assumption: Finite but arbitrary set of interrupt times
0.10 1
B = {b1,bs,...,b =} i
Imposed by the nature: CPU scheduling, 1/3/7/14 days in free trials, etc. 0.00 i 25

Strategy: Use upper confidence bound as a surrogate for rd(b))

c Find concentration inequalities for e Exploit the information structure

reward rate. imposed by the temporal dynamics.

Need: Estimators that provide There is an information sharing between
exponential convergence rate despite the different (k, b) actions based on
heavy tails. observability.

75

10.0 125 15.0 17.5 20.0

Propose UCB-BwI for the online learning
problem.

Based on the concentration inequalities, exploit
the information structure for low-regret.



Concentration Inequalities for Renewal Processes

()
B[R Lo <y
E[X{ A b]

Wanted: UCB for r(k)(b) =

Q First candidate: Empirical reward rate [Asmussen, '08], [Karlin, ‘83]

3
2iz1 Rillo <y

#0) (b)) = S X A b

— r® (b)) a.s.

Problem: Heavy-tailed completion time and reward
Convergence rate is polynomial, not exponential (Chebyshev)

P(ra(bL) < r(bL) ~ Ao(e)) = O 25 )

1 _— :
(ui? Bound is tight [Catoni, 10, Bubeck "12].

for Ag(e) =

Cause: Outliers due to the heavy tails pull the sample mean
away from the ensemble mean.

Fix: Robust median-of-means estimator [Nemirovski, ‘82], [Bubeck, '12]

3

Given{U:i=1,2, ..}, w= L810g(e%5‘1) A EJ and m = L—J

2 w
M(Uq.) —med{ ZU., . i""‘: Ui}
i=(w—1)m+1

For each (k, b)), the median-of-means estimator for the reward rate r¥(b)):

M(Rilljx <b) : i < s)
M(X; Ab:i<s)

Ts(b) =

Proposition 3. (Conc. Ineq. for Renewal Reward Processes)
For any decision (k, b) and 4 € (0,1),

P(79(b) < 9 (b) — A(e(6)) ) <0

where €(8) = [3(%)?

S

Exponential convergence rate

Sub-Gaussian (optimal) accuracy-confidence tradeoff if y = 1 [Bubeck, "12b]



UCB-BwI Algorithm

Information structure:

0.40
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Information sharing

Feedback -« Is X, smaller than b?

* If so, values of X,® and R,

UCB-BwI Algorithm

At epoch (n+1), UCB-Bwl Algorithm makes a decision as follows:

(1+r)e

(InH, Brﬁ'jrﬁl)) € arg max {Fn’Tl(k)(n)(bO +

n, T (n) }
(k,br)

o E"aﬁk)(")

where

e = [log (2e%(n + 1)4)] yE

Q Tl(k)(n) is the effective sample size — information structure

Q These questions can be answered for all b’ < b by this feedback [Observability]

Formally, Y (k,b') € o(Y(k,b)), Vb’ <b

Q Action (k, b) increases the sample size for all (k, b’) such that b" < b.



Performance Analysis: Regret Bounds for UCB-BwI

Proof Sketch: Asynchronous decisions + random number of trials

Let
dr(;)n < r(k)(bﬁ) — Inax r(k)(b|) (Suboptimality in k)
- c Dealing with asynchronous decisions: regret rate
d) = p* — 1n<1|a<)i r(k)(b|) (Suboptimality across k) N (7)
== RegTr(T) < [ Z Z]I{'?Tn:(k:bl)} (r* - r(k)(bl))ﬂmax} + Res
n=1 k,l
Theorem 1. (Regret Upper Bound for UCB-BwI) e Dealing with randomness of N_(1): High prob. upper bounds for N_(t)
Regret under UCB-Bwl satisfies the following bound for all © > 0: R—eg (1) < Z E[Tl(k) (A)] (r* (Y (bl))ﬂmax
T -
k.l

Reg_(7) < Z Cklog( : ° )JrO(KXL)

miny E[ng)] +K x L x r*umaxZP(Nﬂ(T) > n) + Res

k:d(k) >0

where _ n>n -
6= O((m)* + () a2
: ((d“‘)) + (3 ) O(1) if i = =~

e Number of suboptimal decisions in 2t/u epochs: Bandit analysis +

Q Logarithmic regret in . - .
= information structure

Q Action space: O(K x L) but C, is O(K) as a result of info structure. Q P ) TSrorder O | . |
atching lower bound of order og 1) — order optimality



Performance Analysis: Numerical Results

Task scheduling with heterogeneous statistics

0.45 ‘ 2500
04 - 1
If no interrupts, arms 2 and 3 are .
. 851 ] 2000
equally better than arm 1. Optimal [ —
03r !
. o . (1)
interruption — arm 1 optimal / o)
=025 - ’ .
= 4 ) 1500
= ’ No interrupt —
£ 02 - 9
g
0.15 - ] o
1000
0.1 Hoptimal interrupt time ]
Monotone interrupt set for Am 1 ——k=1, X.) ~ Pareto(1,14)
0.05 — k=2, X% ~ Exp(1/3)
- = k=3, X ~ Uniform(0,6)
0 e : : 500
BL = {3, 6, soag 3(|_ — 1)} 10° 10’ 10° 10°
b

Q Logarithmic regret

Q Despite x48 expansion of the action space, only little increase in the
regret as a result of the information structure



Conclusions

a Presented BwI framework to incorporate time dimension into sequential learning.

General completion time and reward distributions: Interruption as a new control

Non-parametric learning algorithm UCB-BwI that achieves order optimality in all parameters 7, K, L



